

Nutrição de gatos:

Necessidades nutricionais, manejo e particularidades da espécie

Prof_a. Dr_a. Bruna Agy Loureiro Universidade Federal da Paraíba

Espécie em ascensão: domicílios com gatos cresce mais

Unique nutrient requirements of cats appear to be diet-induced evolutionary adaptations

J.G. Morris

Recent Advances in Animal Nutrition in Australia, Volume 13 (2001)

A adesão do gato a uma dieta muito especializada os conduziu a **adaptações metabólicas específicas**, que se manifestam como peculiaridades nas suas necessidades nutricionais.

(Case et al., 2010)

Qual a origem das particularidades?

- ✓ Padrões dietéticos → adaptações metabólicas
- √ "Poupam" gastos metabólicos com a produção de enzimas pois adquirem prontas de suas presas
- ✓ Indução de vias catabólicas
- ✓ Perda de vias requeridas para a síntese de nutrientes

ASSET ASSET

Preferências Alimentares dos Gatos

10 a 20 refeições diárias (23 kcal) Extinto caçador – mesmo tendo alimento a vontade Extremamente seletivos a alimentos

Temperatura

✓ Alimentos mornos

X Muito quente ou frios

Textura

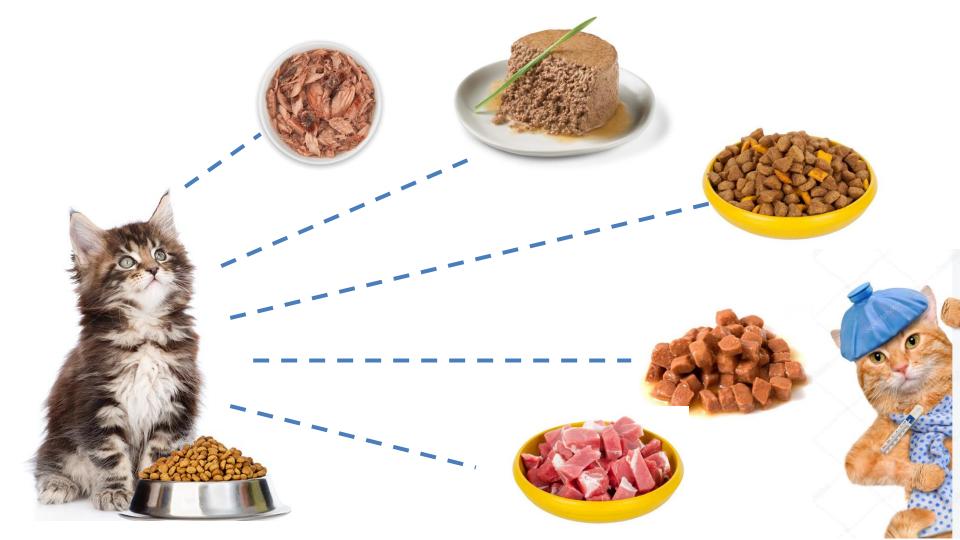
✓ Alimento sólidos e suculentos (carne)

× Pó, grudento ou muito gorduroso

<u>Sabor</u> e <u>textura</u> influenciados por experiências na infância (até 6 meses)

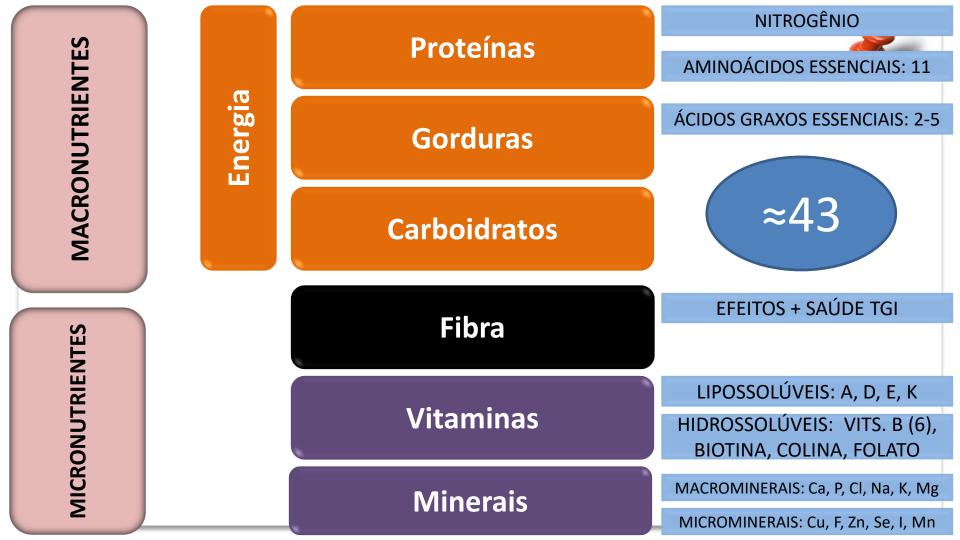
Gatos acostumados com um só tipo de alimento podem recusar outros com diferente textura

Adquirem aversão a alimentos relacionados a episódios negativos

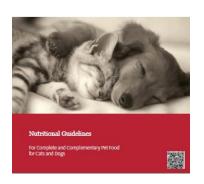


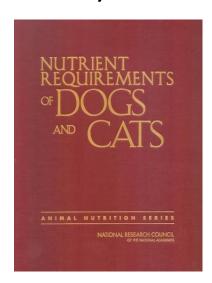
Sabores

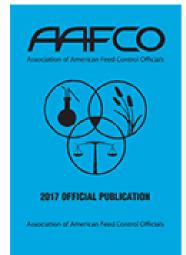
✓ Animais: Gordura, hidrolisados de proteína, extratos de carne e aa livres presentes no tecido muscular, umami


× Não possuem receptores para o sabor doce

Necessidades Nutricionais dos Gatos






Guias Nutricionais

- Nutrient Requirements of Dogs and Cats (NRC, 2006)
- Association of American Feed Control Officials (AAFCO, 2017)
- European Pet Food Industry Federation (FEDIAF, 2017)

Níveis recomendados

Limites de Segurança

Estadio fisiológico

Necessidade por 100g MS

Nutrientes	Unidade	Manu	Crescimento &	
Nutrientes	Unidade	75 kcal/kg ^{0,67}	100 kcal/kg ^{0,67}	Reprodução
Proteína	g	33,3	25,0	28,0/30,0
Lisina	g	0,45	0,34	0,85
Metionina+cistina	g	0,45	0,34	0,88
Ácido linoleico (w6)	g	0,67	0,50	0,55
Ácido araquidônico (w6)	mg	8,00	6,00	20,00
Ácido alfa linolênico (w3)	g			0,02
EPA + DHA (w3)	g			0,01
Cálcio	g	0,79	0,59	1,00
Fósforo	g	0,67	0,50	0,84
Vitamina A	UI	444	333	900

Fediaf, 2017

Galas	ien	ieas
adultas	cast	tradas
= 0 -		0.67

Cotos fôres

Necessidade por 100g MS					
Nutrientes	Unida	58 kcal/kg ^{0,67}	enção - 100 kcal/kg ^{0,67}	Cre R	
Proteína	g	33,3	25,0	4	
Lisina	g	0,45	0,34		
Mationing Laigting		0.45	0.24		

Nutrientes	Unida	58 kcal/kg ^{0,67}			
	_	13 Nearing			
roteína	g	33,3			
isina	g	0,45			
letionina+cistina	g	0,45			
cido linoleico (w6)	g	0,67			
cido araquidônico (w6)	mg	8,00			
cido alfa linolênico (w3)	g				
PA + DHA (w3)	g				

_	100 kcal/kg ^{0,67}	Reprodução)
	25,0	28,0/30,0	
	0,34	0,85	
	0,34	0,88	
	0,50	0,55	
	6,00	20,00	
		0,02	
		0,01	

Cálcio 0,59 0,79 1,00 g Fósforo 0,67 0,50 0,84 g Vitamina A 444 333 UI 900

EI

rescimento &

Fediaf, 2017

NS British Journal of Nutrition

Energy requirements of adult cats

Emma N. Bermingham^{1*}, David G. Thomas², Penelope J. Morris³ and Amanda J. Hawthorne³

Table 2. Maintenance energy intakes and body weight (BW) for domestic cats

(Mean values, standard errors and ranges)

		ME intake (kcal/d)				BW (kg)			ME intake (kcal/kg BW)		
	n	Mean	SE	Range	Mean	SE	Range	Mean	SE	Range	
All cats	115	222-1	5.3	122-5-401-0	4.1	0.1	2.6-6.6	55-6	1.1	29.0-85.5	
Light-weight cats (<3 kg)	19	178-8	8-1	123-2-250-5	2.8	0.1	2.6-2.9	62-8	2.8	44.5-85.5	
Normal-weight cats (3-0-5-5 kg)	79	224-1	6.5	122-5-401-0	4.0	0.1	3.0-5.3	56-3	1.2	31.0-79.0	
Heavy-weight cats (>5.5 kg)	17	262-1	9.3	174-0-342-0	6-1	0.1	5.5-6.6	43.9	1.7	29.0-60.0	
Entire female	12	215.0	12.4	137-3-282-1	3.3	0.2	2.6-4.5	66-0	2.5	52.8-85.5	
Entire male	12	280.3	18.3	171.5-401.0	4.7	0.2	3.5-5.8	60-9	3.2	48-9-78-6	
Neutered female	20	192-6	8.7	123-2-257-4	3.3	0.1	2.7-4.5	58-2	2.4	44.5-84.4	
Neutered male	14	243.7	16.9	134-9-379-2	4.5	0.2	3.3-6.0	55-2	3.2	39.0-79.0	
Mix	57	216-3	7.0	122-5-342-0	4.4	0.2	2.8-6.6	51.4	1.4	29.0-76.4	
Young (0.5-2.0 years)	34	228-0	10.7	123-2-379-2	3.9	0.2	2.6-6.1	59-4	2.1	40.9-85.5	
Adult (2·0-7·0 years)	27	199-1	9.9	122-3-316-2	4.2	0.2	2.8-6.6	48-4	1.8	31.0-65.4	
Senior (>7.0 years)	7	194-2	18-6	135-0-379-2	3.9	0.2	3.2-4.5	51-1	3.2	39-0-63-1	
Unknown	47	235-2	7.6	141-4-401-0	4.2	0.2	2.8-6.3	57-6	1.6	29.0-78.6	
Feeding experiments	59	230.2	6.9	123-2-401-0	4.2	0.2	2.8-6.6	58-0	1.6	35.8-85.5	
Indirect calorimetry	38	203.7	8.2	122-5-305-0	4.1	0.2	2.8-6.2	50-0	1.5	29.0-70.0	
Doubly-labelled water	18	234-2	17-0	134-9-379-2	3.9	0.2	2.6-4.8	59-2	2.4	40-9-79-0	

ME, metabolisable energy; n, number of treatment groups.

Particularidades Metabólicas dos Gatos

- 1) Alta necessidade de proteína
- 2) Necessidade de Arginina
- 3) Necessidade de Taurina
- 4) Alta Necessidade de Niacina (B3)
- 5) Fonte pré-formada de vitamina A
- 6) Necessidade de ácido araquidônico
- 7) Metabolismo de energia e glicose
- 8) Ingestão hídrica

1) Alta Necessidade de Proteína

Metabolismo de proteínas

Gatos apresentam maior necessidade proteica para manutenção e crescimento que os demais mamíferos

1,5x mais proteína

2 a 3x mais proteína

Espécies não carnívoras

1) Alta Necessidade de Proteína

Aminoácidos não essenciais

Aminoácidos essenciais

Lisina (c)

Metionina+cistina (g)

Triptofano (g, c)

Arginina (g)

Treonina (g)

Valina (g)

Taurina

Leucina (c)

Isoleucina (g, c)

Histidina (g)

Fenilalanina+tirosina (g, c)

Nitrogênio e Carbono

Não conseguem sintetizar

N – síntese de AA não essenciais

C – Gliconeogênese / energia

Maior necessidade de N

Gatos

Baixa capacidade regulação das enzimas catabólicas de N

- enzimas do ciclo da uréia
- alanina aminotransferase
- aspartato aminotransferase

Metabolismo de proteínas

Perda urinária de N (independente do N ingerido):

360 mg/kg PV^{0,75}/dia – GATOS adultos

210 mg/kg $PV^{0,75}$ /dia – cães

163 mg/kg PV^{0,75}/dia – suínos

62 mg/kg PV^{0,75}/dia – homem

Nutrientes	Unidade	75 kcal/kg ^{0,67}	100 kcal/kg ^{0,67}	Crescimento & Reprodução
Proteína	g	33,3	25,0	28,0/30,0

2) Necessidade de Arginina

Arginina **não** é considerada um aa essencial pois pode ser sintetizada a partir do:

Glutamina/Glutamato
Prolina
Ornitina

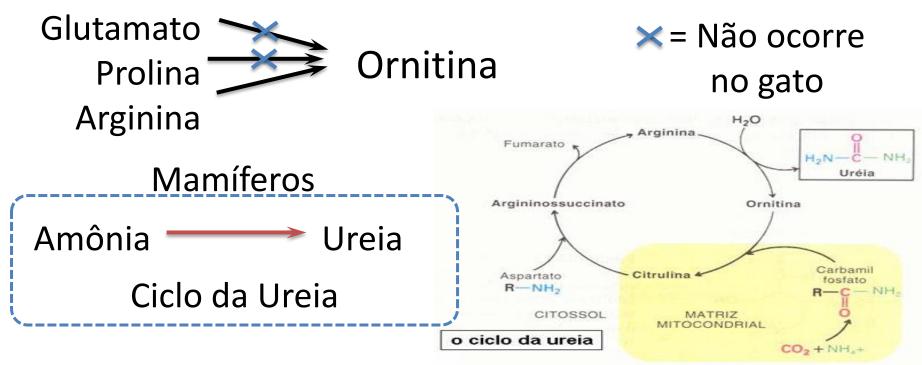
Para cães e gatos é um aminoácido essencial

Síntese de arginina

Phosphate-dependent glutaminase Glutamate D1-Pyrroline-5-Pyrroline-5-carboxylate carboxylate synthase dehydrogenase Proline oxidase P-5-C Glutarate Ornithine iminotransfar

Intestino

Proline


ARGININA

NH₃+HCO₃- CPS 1 C-P Ornithine carbamoyltransferase

(MORRIS, 2001)

Síntese de arginina Glutamine Intestino Phosphate-dependent glutaminase Glutamate Pyrroline-5-carboxylate dehydrogenase Proline oxidase P-5-C Proline Glutarate Ornithine Ornithine carbamoyltransferase Citrulline (MORRIS, 2001)

Arginina

Hiperamonemia em dieta livre de arginina

Arginina

Consumo de dieta livre de arginina:

- Sinais progressivos de salivação
- Alterações neurológicas
- Êmese, tetania, coma

→ Morte em poucas horas após consumo de alimento sem arginina

A maioria dos tecidos animais são fontes de arginina

Nutrientes	Unidade	75 kcal/kg ^{0,67}	100 kcal/kg ^{0,67}	Crescimento & Reprodução
Arginina	g	1,3	1,0	1,07 / 1,11 (Max 3,50)

3) Necessidade de Taurina

Gato é incapaz de sintetizar taurina

Metionina Cistina Enzimática
Hipotaurina Taurina

via alternativa (competitiva) --> piruvato (fonte de E)

Taurina

Ácidos Biliares

Conjugados:

Glicina

ou

Taurina

Animais: taurocólico, desoxicólico, glicocólico

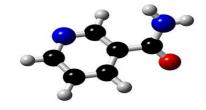
Gatos: taurocólico

Maior necessidade para compensar as perdas fecais da taurina conjugada com ácidos biliares.

Taurina

Funções { conjugação de ácidos biliares funcionamento do miocárdio e retina reprodução de gatas

Dietas enriquecidas com Taurina sintética


Nutrientes	Unidade	75 kcal/kg ^{0,67}	100 kcal/kg ^{0,67}	Crescimento & Reprodução
Taurina (seco)	g/100g	0,13	0,10	0,10
Taurina (úmido)	g/100g	0,27	0,20	0,25

4) Alta Necessidade de Niacina

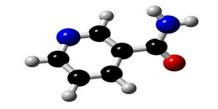
Pode estar em duas formas nos alimentos:

Niacina - Vitamina B₃

Niacina

(parte das necessidades dos animais)

Gato desvia a reação para uma via catalítica



picolinico descarboxilase (30-50x mais ativa que em ratos)

Glutarato e CO₂ (Energia)

Carne rica em triptofano, por isso ativação da via catabólica é vantagem para os gatos

Niacina - Vitamina B₃

Função: formação enzimas NAD e NADP

Reações metabólicas para o fornecimento de energia

Deficiência: perda de peso, anorexia, fraqueza, apatia, ulceração da cavidade oral e língua, problemas respiratórios, morte

Nutrientes	Unidade	75 kcal/kg ^{0,67}	100 kcal/kg ^{0,67}	Crescimento & Reprodução
Niacina	mg/100g	4,21	3,20	3,20

5) Necessidade de Vitamina A pré-formada

5) Necessidade de Vitamina A pré-formada

• A₁: principal, com 3 formas ativas

Retinol

Retinal

- Nos tecidos animais: retinol
- Nos vegetais: apenas precursores (Carotenóides ou pro-vitamina A)

Vitamina A

ß-caroteno vegetal é o precursor de toda a vitamina A utilizada pelos animais.

Vitamina A

Funções

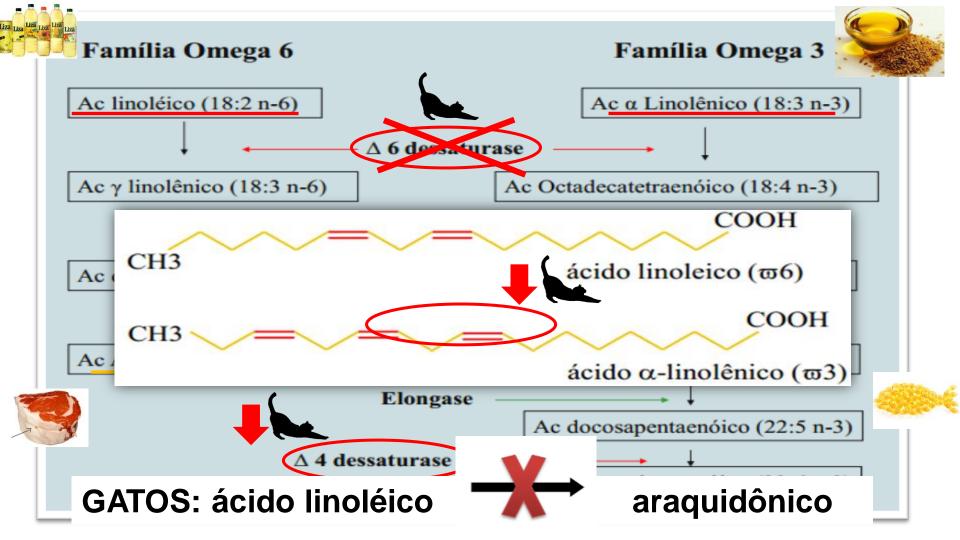
- ✓ Desenvolvimento embrionário do olho e formação da rodopsina (receptores da visão no escuro)
- ✓ Desenvolvimento e manutenção dos tecidos epiteliais (pele e mucosas)
- ✓ Ciclo estral e espermatogênese
- ✓ Desenvolvimento ósseo

Vitamina A

Sintomas de deficiência

√ Visão (xeroftalmia e cegueira noturna)

- ✓ Reprodução
- ✓ Sistema nervoso
- ✓ Tecido ósseo


Gatos são resistentes a intoxicação por Vitamina A

Nutrientes	Unidade	75 kcal/kg ^{0,67}	100 kcal/kg ^{0,67}	Crescimento & Reprodução
Vitamina A	UI/100g	444	LAP. LYC NCS. (15)	900 (40.000/33.333)

6) Necessidade de Ácido Araquidônico

Ácidos graxos essenciais

Funções:

- ✓ Componente estrutural da membrana celular
- ✓ Precursores dos eicosanóides
 - Envolvidos na resposta inflamatória, processos imunes e na coagulação sanguínea

Ácidos graxos essenciais

Deficiência:

- ✓ Alterações cutâneas
- ✓ Transtornos de coagulação e hemorragias
- ✓ Problemas neurológicos e visuais (alterações no cérebro e retina)
- ✓ Infertilidade
- ✓ Maior susceptibilidade a infecções

Nutrientes	Unidade	75 kcal/kg ^{0,67}	100 kcal/kg ^{0,67}	Crescimento & Reprodução
Ácido araquidônico	mg/100g	8,0	6,0	20,0

6) Metabolismo dos Carboidratos

Metabolismo de carboidratos

Limitada habilidade do organismo em conservar N

Dieta natural dos felinos → pouco CHO

Uso imediato dos aminoácidos gliconeogênicos

Manutenção das concentrações sanguíneas plasmáticas de GLICOSE

Não tem
exigência
nutricional
Carboidratos

Metabolismo de carboidratos

1. Gatos digerem o amido?

- Não apresentam enzima alfa amilase salivar
- Iniciam a digestão do amido apenas no ID
- Estudos apontam digestibilidade aparente do amido de diferentes fontes acima de 90%

Metabolismo de carboidratos

- 2. Gatos não são metabolicamente adaptados a ingestão de carboidratos ?
 - Essencialmente carnívoros

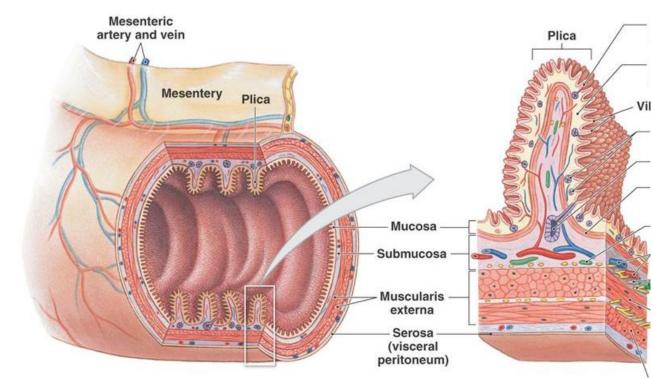
Hexoquinase (I, II, III) e Glico ruinese (ou IV)

Hexokinase Baixa glicemia

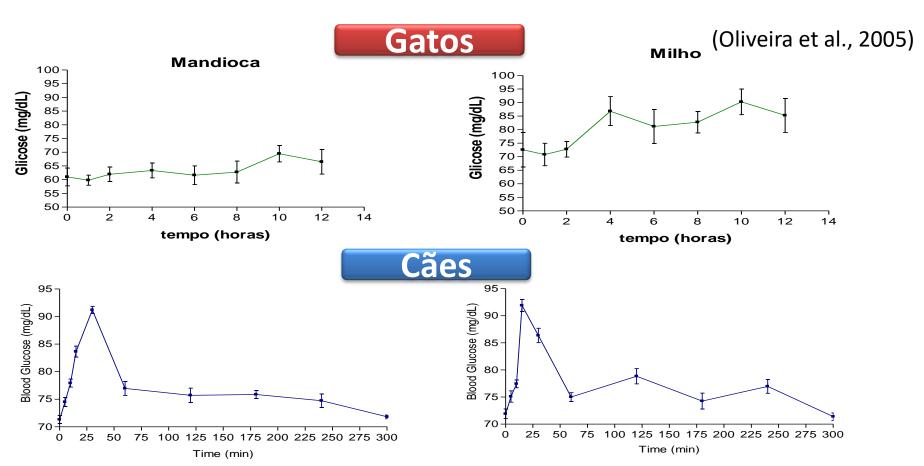
Glucokinase Alta glicemia

Blood glucose (mmol/L)

Maior capacidade de transportar glicose através da membrana de borda em escova intestinal



Intestino delgado de Gatos


> área de camada mucosa por unidade de

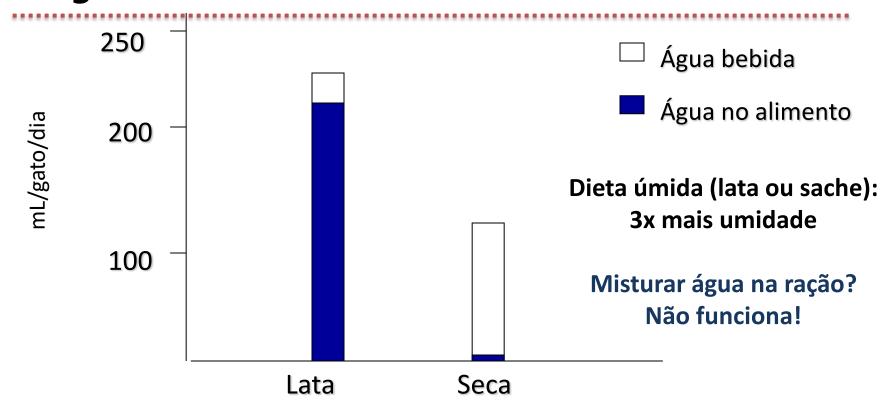
camada serosa

> eficiência absortiva

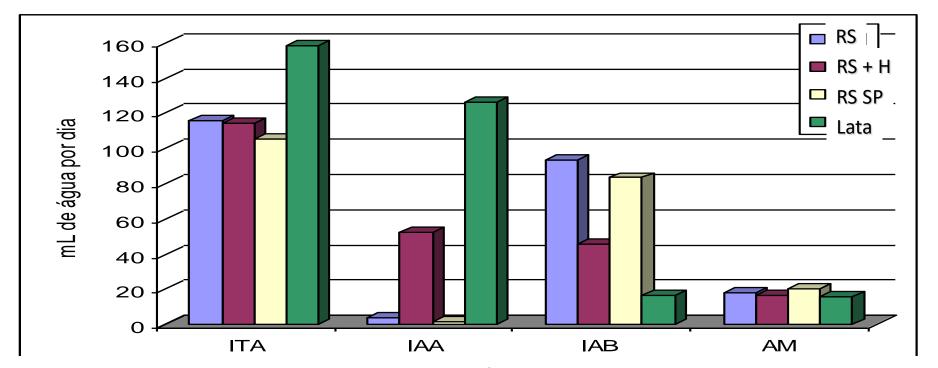
RESPOSTAS GLICÊMICAS

(Takakura, 2003)

8) Ingestão Hídrica

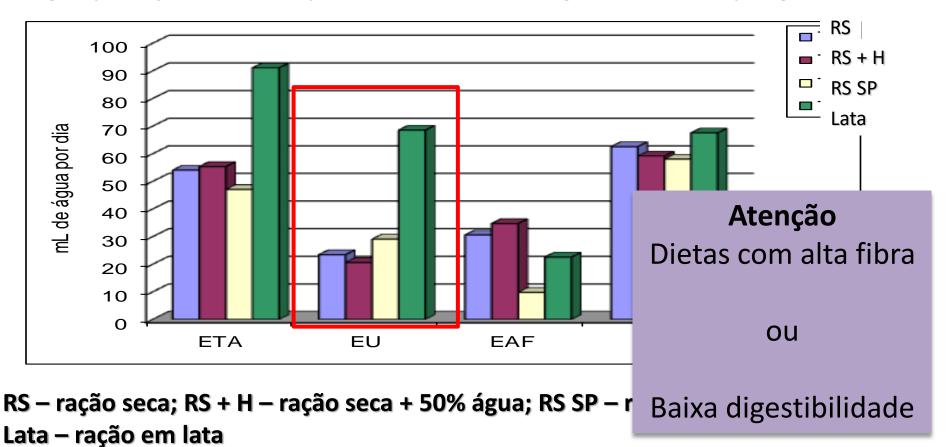


Adaptados à escassez de água...


BAIXA INGESTÃO DE ÁGUA

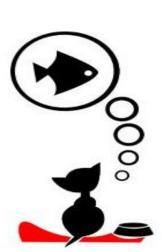
- √ Compensam concentrando a urina
- ✓ Aumento da supersaturação urinária e risco de formação de cristais
- ✓ Consumo alimento úmido: maior ingestão hídrica total

Efeito do tipo de alimento na ingestão de água em gatos



Ingestão total de água (ITA), ingestão de água via alimento (IAA), ingestão de água no bebedouro (IAB) e água metabólica produzida (AM) - em ml por gato/dia

RS – ração seca; RS + H – ração seca + 50% água; RS SP – ração seca super premium; Lata – ração em lata


Excreção total de água (ETA), excreção de água pela urina (EU), excreção de água pelas fezes (EAF), e perdas insensíveis de água (PI), em ml por gato dia.

Considerações

- Alta necessidade proteica
- Necessitam de argina e taurina dietéticas
- Não sintetizam vit. A a partir de carotenóides
- Baixa conversão de triptofano em niacina
- Necessidade ácido araquidônico
- Metabolismo de carboidratos limitado
- Estimular a ingestão hídrica

